

Changes in Farm Landscape with the Introduction of a Biomass Market

Farm Foundation Conference, St. Louis

Dr. Michael Popp, Dr. Lanier Nalley and Gina Vickery
University of Arkansas
Agricultural Economics and Agribusiness

UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE

Introduction

- Cellulosic ethanol will require biomass
- Perennial switchgrass and/or annual biomass crops like forage sorghum are expected to provide feedstock
 - Irrigation and fertilizer intensity
 - · yield potential and moisture
 - seasonality and speed of supply response
- Local technological and socioeconomic details associated with land use decisions
- Need information on where and at what prices biomass could be available with changing market conditions

UNIVERSITY OF ARKANSAS DIVISION OF AGRICULTURE

Objectives

- Use county specific information to determine crop acreage allocation
- Validate model with 2007 data
- Estimate spatial supply function for biomass
- Sensitivity analysis on fertilizer and fuel cost
 - 2007 vs. 2008 vs. 2008 x 1.5 and x 2
- Track irrigation water and labor use

Data

- Switchgrass B/E price (2007, 2008), round baled and stacked (per dt)
 - Cropland (\$18.60, \$19.95)
 - Hayland (\$22.28, \$23.88)
 - Pasture (\$23.62, \$25.38)
- Opportunity Cost per acre for Switchgrass across counties
 - 2007 (\$30.36 \$116.64, simple county avg. \$52.21)
 - 2008 (\$35.00 \$285.82, simple county avg. \$98.35)
- Forage Sorghum B/E price (2007, 2008), standing in the field (per dt)
 - Irrigated (\$28.41, \$30.62)
 - Dryland (\$29.74, \$32.61)
- No yield adjustment across counties
- At \$35/dry ton, irrigated forage sorghum takes over

Model

 Maximize Arkansas net returns above total specified expenses (NR) to 18 crop, hay, pasture and CRP land use choices in 75 counties as follows:

Maximize
$$NR = \sum_{i=1}^{75} \sum_{j=1}^{18} (p_j \cdot y_{ij} - c_{ij}) \cdot x_{ij}$$

where

- p_i July futures prices as of previous year
- y_{ij} '04 '07 average county crop yields
- c_{ii} county and crop specific total specified costs

Subject to:

crop, hay and pasture acreage min and max irrigation acreage min and max irrigation quantity restriction

Analysis

- Ran the model using input prices for
 - 2007 (baseline)
 - . 2008
 - 2008 with fertilizer and fuel x 1.5
 - 2008 with fertilizer and fuel x 2
- Captured labor and irrigation water use
- Mapped county biomass production at three different switchgrass price levels to determine plant locations
- Estimated supply functions for Arkansas

Results

- in the \$35 to \$60 price range ~ 50,000 acres / \$1 regardless of year and input cost
- \$10 more between 2007 and 2008

Spatial Supply -- 2007 Baseline

Spatial Supply -- 2008 Baseline

More Results & Limitations

- For every \$5 increase in biomass price, irrigation water use declined by 1.5% (no substantial changes in labor use)
- Plant location decisions as mapped assume sourcing from within the county
- Static analysis does not include dynamics on how perennials will enter
- More crop alternatives and residues
- Need to update with 2007 census data